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Abstract
We present a study of the correlation length ξ of a hard-core fluid with three different tail
interactions, namely, the Asakura–Oosawa potential, an attractive Yukawa tail, and a double
Yukawa tail which is attractive at short distance and repulsive at long distance. The correlation
length is obtained along the critical isochore in the whole range of supercritical temperatures by
determining the leading pole of the structure factor S(k) in the complex plane, where S(k) is
obtained from the hierarchical reference theory. We focus on how ξ changes from its
Ornstein–Zernike form in the critical region to its high-temperature limit, and find instances of
both the Fisher–Widom and Kirkwood scenarios for the monotonic to oscillatory crossover of
the decay of correlations at long distance.

1. Introduction

The main reason for the keen interest raised by colloidal
dispersions, both experimentally and theoretically, consists in
the ability to modify the effective interactions between the
macroparticles by tuning the dispersion parameters such as
the electrolyte ionic strength, the length and the concentration
of adsorbed or nonadsorbed polymer, and so on. Unlike
in atomic fluids, this implies that not only the strength, but
also the shape of the interaction can be substantially changed,
thereby leading to a much richer phase behaviour. Of course,
asymptotically close to a critical point these features are bound
to give way to the universality that rules critical phenomena,
as a consequence of which the critical exponents belong to
the same Ising class found in simple liquids. Nevertheless,
some memory of the specific interaction remains in how
the asymptotic power-law behaviour is reached. This was
the topic of a recent study [1], where we considered the
critical properties of several well-known model interactions for
colloidal fluids, and showed that the crossover to the power-
law regime is indeed strongly affected by features such as the
range of the interaction or the degree of competition between
attraction and repulsion, that cannot be modified or do not
occur at all in simple fluids. In that study, we focused on

the isothermal compressibility χT and correlation length ξ ,
that are the quantities most directly accessible by experiments.
In particular, the correlation length has been the subject of
a recent experimental investigation of a colloidal dispersion
subject to polymer-induced attractive depletion forces [2]. As
observed in that work, the fact that the role of the (inverse)
temperature of an atomic system is played by the polymer
concentration allows one to map in a single experiment the
correlation length from the critical regime, where ξ is much
bigger than the particle size σ , to that of vanishingly small
attraction, where ξ becomes comparable to σ . The latter
regime was not explored in [1], and we have addressed it here
for two of the effective interactions considered in that work,
namely, the Asakura–Oosawa (AO) potential for depletion
interactions [3], and a hard core plus two-Yukawa (HCTY)
tail potential with competing short-range attraction and longer-
ranged repulsion. While in the neighbourhood of the critical
point the decay of the correlations is determined by the
behaviour of the reciprocal of the structure factor 1/S(k) at
small wavevector k, thereby leading to the Ornstein–Zernike
correlation length ξOZ, this is no longer true away from the
critical point, where ξOZ becomes meaningless, and one needs
to turn to the true correlation length, as determined by the
leading pole of the full S(k) in the complex plane. The
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nature of the singularities also dictates whether the asymptotic
decay of the correlations is monotonic or oscillatory, whether
a change from one type of decay to the other takes place as
the thermodynamic state is changed, and according to which
mechanism this may come along. We have looked upon all of
these issues, and found that the two model interactions studied
here give quite a complete picture of the different possible
scenarios. This is one more instance, in which the behaviour of
colloidal systems turns out to be richer than that of their atomic
counterparts. In section 2, we briefly summarize the theoretical
framework of the present investigation; in sections 3 and 4 we
present our results for the AO and the HCTY case respectively;
in section 5 we draw our conclusions.

2. Theory

As in [1], the AO and HCTY fluids have been described by the
hierarchical reference theory (HRT). A detailed account of this
method has been given elsewhere [4]. Here we just recall that
its purpose is to implement the main ideas of renormalization
group within liquid-state theory. As is customary in
perturbation theories, one starts from a ‘reference’ system
whose constituents interact only via short-ranged, possibly
singular repulsive forces, and whose properties are assumed
to be known. For the potentials considered here, the hard-
sphere gas is the obvious choice. The perturbation, namely, the
remaining part of the interaction, is then fed into the system by
gradually switching on its Fourier components of longer and
longer wavelengths, so that the long-wavelength fluctuations
driving criticality and phase separation are allowed to develop
only at the end of the process. The corresponding evolution of
the Helmholtz free energy is described by an exact equation
that involves the direct correlation function in momentum
space ĈQ(k), where the subscript Q represents the smallest
wavevector for which the Fourier components of the interaction
have been taken into account at a certain stage of the evolution.
The physical system is recovered in the limit Q → 0. A
closed theory is obtained by supplementing this equation with
an approximate expression for ĈQ which, as in the previous
applications of HRT, is assumed to be given by

ĈQ(k) = ĉHS(k) + λQ ŵ(k) + ĜQ(k) (1)

where ĉHS(k) is the direct correlation function of the hard-
sphere gas and ŵ(k) is the perturbation, both taken in Fourier
space. For ĉHS(k) the Verlet–Weis parametrization [5] has been
used. The function ĜQ(k) is found so as to satisfy, albeit
approximately, the requirement that the radial distribution
function gQ(r) should be vanishing inside the hard core. In
practice, its inverse Fourier transform GQ(r) has been taken
as a fourth-degree polynomial with adjustable coefficients for
0 < r < σ , and is identically vanishing for r > σ , σ

being the hard-core diameter. The parameter λQ is instead
determined by requiring that the Helmholtz free energy given
by the HRT evolution satisfies the compressibility rule ĈQ(k =
0) = ∂2Aex

Q /∂ρ2, where Aex
Q is the excess Helmholtz free

energy per unit volume divided by −kBT . Enforcing these
conditions gives a partial differential equation for Aex

Q that is
solved numerically from Q = ∞ down to Q = 0.

In this work we will be concerned with the asymptotic
decay of the pair correlation function h(r) = g(r) − 1, that
is related to the direct correlation function in Fourier space by
the Ornstein–Zernike equation

h(r) =
∫

d3k
(2π)3

eik·r ĉ(k)

1 − ρ ĉ(k)
(2)

where ρ is the number density of particles and we have omitted
the subscript Q in referring to the fully interacting system.
For potentials that have a finite support or decay exponentially
such as those considered here, h(r) at large r is exponentially
damped, and the decay rate is determined by the leading pole
of the integrand in (2), i.e., by the complex solution of the
equation

1 − ρ ĉ(α) = 0 (3)

which has the smallest imaginary part in absolute value [6].
This gives the correlation length ξ via the relation ξ =
1/ Im(α). The decay of h(r) is monotonic or oscillatory
depending on whether α is purely imaginary, or it has also
a real part. We note that, within the closure (1) and for the
potentials investigated here, ĉ(q) is known analytically in the
whole complex plane once the amplitude of the perturbation
λQ and the coefficients of ĜQ(k) have been determined. This
analytical expression was substituted into (3), and the resulting
equation was solved numerically.

For thermodynamic states near the critical point, the
leading singularity is close to the origin and therefore is
determined by the behaviour of 1 − ρ ĉ(k) at small k. In this
limit (1) yields

1 − ρĉ(k) ∼ 1

χT
+ b k2 (4)

where χT is the reduced isothermal compressibility and b is
proportional to the second moment of c(r) in real space. This
gives the expression of the Ornstein–Zernike correlation length
ξOZ as

ξOZ = √
ρ bχT . (5)

As one approaches the critical point, ξ and ξOZ become
identical. The coefficient b is state-dependent and, according
to the approximate closure (1) used here, at the critical point
it remains finite and strictly positive. Equation (5) then gives
the relation ν = γ /2 between the critical exponents of
the correlation length and isothermal compressibility on the
critical isochore, thereby setting the critical exponent η to 0.
This shortcoming is not very severe in three dimensions, owing
to the small value of η.

3. Asakura–Oosawa potential

For the AO potential, the interaction wAO(r) outside the hard
core is given by [3]

βwAO(r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−ηr
p

(1 + q)3

q3

[
1 − 3r

2(1 + q)

+ r 3

2(1 + q)3

]
1 < r < 1 + q

0 r > 1 + q

(6)
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Figure 1. Correlation length on the critical isochore of the AO fluid
with polymer-to-colloid size ratio q = 0.4 (upper panel) and q = 0.8
(lower panel) as a function of the reduced temperature
t = (ηr

p,c − ηr
p)/η

r
p. Open circles: true correlation length ξ . Dotted

lines are a guide to the eye. Solid line: power-law fit of ξ in the
critical region according to ξ = ξ0[t/(t + 1)]−ν . Dash-dotted line:
same as above, but with ν set at 0.54 and ξ0, ηr

p,c determined by
fitting to data in the interval −1.5 � log(t) � −0.5 (see the text).
Dashed line: Ornstein–Zernike correlation length ξOZ.

where β = 1/(kBT ), the colloid diameter σ has been set
equal to unity, q is the ratio between the polymer and colloid
diameters, and ηr

p is the packing fraction of the pure polymer
in osmotic equilibrium with the polymer in the mixture. This
‘reservoir’ packing fraction plays the same role as the inverse
temperature β in a thermal system. Therefore, the control
parameter, usually identified with (T − Tc)/Tc, now becomes
t = (ηr

p,c − ηr
p)/η

r
p, where Tc and ηr

p,c are the critical values of
T and ηr

p.
In figure 1 we have displayed the true correlation length

ξ at the critical colloid density ρ = ρc as a function of t
on a log–log plot for two AO potentials with q = 0.4 and
q = 0.8. HRT gives ηr

p,c = 0.4404, ρc = 0.431 and
ηr

p,c = 0.4825, ρc = 0.362 for q = 0.4 and q = 0.8
respectively. As the critical point is approached, the log–log
plot becomes a straight line, corresponding to the power-law
behaviour ξ ∼ ξ0t−ν with ν = 0.689 according to HRT. The
figure shows also the Ornstein–Zernike correlation length ξOZ

given by (5). From inspecting the results reported in the figure,
a number of observations can be made. First, the log–log plot
of ξ versus t shows a ‘knee’ located at a reduced temperature
tFW which lies in the interval −1 < log t < 0. tFW is the
temperature at which the critical isochore ρ = ρc intersects the
Fisher–Widom (FW) line [6]: for t < tFW, the leading pole
given by (3) is purely imaginary, α1 = iκ1, and h(r) decays
monotonically at large r . As t increases, κ1 moves up, and

Figure 2. The same as figure 1 for the HCY potential with z = 1.8.
The reduced temperature is t = (T − Tc)/Tc.

for t > tFW it gets above the imaginary part of another pole
α2 = λ + iκ2 with λ �= 0, which then becomes the leading
singularity and gives oscillatory decay for h(r). In other words,
at t = tFW the correlation length ξ ‘jumps’ from a purely
imaginary branch of solution of (3) to a nonpurely imaginary
one.

Moreover, in the region of monotonic decay t < tFW the
two lengths ξ and ξOZ are extremely close, and both of them
deviate very little from linearity for q = 0.8 and even less so
for q = 0.4. As t increases above tFW, the deviations between ξ

and ξOZ become immediately very large, with log(ξ) saturating
at a finite value log(ξHS) determined by the correlation length
ξHS of the hard-sphere gas at ρ = ρc, and log(ξOZ) getting
more and more negative. The latter feature is due to the fact
that, as ηr

p decreases, the perturbation ŵ(k) in (1) becomes less
and less important with respect to ĉHS(k), and the coefficient b
in (4) is more and more dominated by its negative hard-sphere
contribution. Therefore, b will vanish at some value of ηr

p and,
according to (5), so will ξOZ. Obviously, in this regime ξOZ

becomes meaningless, since it has no bearing any more with
the decay of h(r).

It is interesting to compare the behaviour of ξ just
illustrated for the AO potential to that found when the
interaction is given by a hard core plus attractive Yukawa
(HCY) tail

wHCY(r) = −e−z(r−1)

r
r > 1 (7)

where the strength of the interaction has been taken equal
to unity and the inverse range z has been set at the value
z = 1.8 appropriate to model the phase diagram of a Lennard-
Jones (LJ) fluid. The HRT critical temperature and density are
Tc = 1.2137, ρc = 0.314. The results for ξ are shown in
figure 2. It appears that, in order to observe the asymptotic
power law for ξ , it is necessary to get much closer to the critical
point than in the AO case. In fact, deviations from linearity
in the log–log plot show up already for log(t) > −3. As
observed in [1], this is due to the fact that for z = 1.8 the range
of wHCY is longer than that of wAO, even for relatively large
values of the polymer-to-colloid size ratio q such as q = 0.8.

3
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This pushes the onset of the Ising regime for wHCY to smaller
reduced temperatures, in agreement with the renormalization
group predictions [7]. Another notable difference with respect
to the AO potential is that there is no change from monotonic
to oscillatory decay of h(r) as t increases. Instead, the decay
at large r is monotonic throughout the critical isochore, and ξ

crosses over smoothly to its high-temperature limit. That this
should be the case is easily understood by considering (3) for
a purely imaginary solution α1 = iκ1. On the one hand, the
compressibility rule 1 − ρĉ(k = 0) = 1/χT implies that for
κ1 = 0 the lhs of (3) is positive. On the other hand, according
to (1) an attractive Yukawa tail will contribute to ĉ(iκ1) a term
1/(z2 −κ2

1 ) with a positive amplitude, so that the lhs of (3) will
diverge to −∞ for κ1 → z−. Therefore, (3) will have a purely
imaginary solution with 0 < κ1 < z provided the amplitude λQ

in (1) is not vanishing, i.e., provided β �= 0. For z = 1.8 and
ρ = ρc, κ1 is always smaller than the imaginary part κ2 of the
leading nonpurely imaginary solution α2. As a consequence,
ξ is always given by 1/κ1. For β → 0, one has λQ → 0, so
that κ1 must get closer and closer to z to satisfy (3). Unlike in
the AO case, the critical isochore never crosses the FW line,
and the high-temperature limit of ξ is not determined by the
hard-sphere correlation length, but rather by the range of the
potential.

Finally, we recall that in [2], experimental and simulation
data for the correlation length over a wide range of t were
found to be well represented by the relation ξ ∼ ξ0[t/(1 +
t)]−ν . In the critical region this is indistinguishable from
ξ ∼ ξ0t−ν , but at high ‘temperature’, i.e., low ηr

p, it saturates
at ξ0 instead of going to 0. This ‘extended’ power law has also
been show in figures 1 and 2, where in each case ξ0, ν, and ηr

p,c
or Tc have been determined by a least-square fit to the HRT
results in the critical region log(t) � −4. It appears that in
the high-temperature region the extended power law performs
quite poorly, the deviations between the actual results for ξ

and its predictions being much more substantial than it was
found in [2], see figure 2 of that paper. However, one should
take into account that the region of t probed there was farther
from the critical point, log(t) being always greater than −3,
and that power-law fits are quite delicate since in the critical
region very small changes in ηr

p,c (or Tc) and ν correspond
to large changes in the critical amplitude ξ0. With this in
mind, we tried to fit our results to the extended power law
by fixing the critical exponent to the same value ν = 0.54
used in [2] and restricting to values of log(t) above −2, which
correspond to the range investigated in [2] for the AO and the
LJ potentials. The results, again reported in figures 1 and 2,
show a much better agreement with the actual data in the
range of t considered. We then conclude that the extended
power-law scaling ξ ∼ ξ0[t/(1 + t)]−ν cannot be reliably
extrapolated to high temperatures, if ν and ξ0 are determined
on the basis of the behaviour of ξ in the very neighbourhood
of the critical point, but on the other hand its accuracy at
high temperature considerably improves, if one focuses on the
region log(t) � −2, as was done in [2], and as is the case with
most experimental investigations. Of course, in this case ξ0

and ν will not coincide with their asymptotic values for t → 0,
so the deviations can be quite large in this limit, as shown in
figures 1 and 2.

4. Competing interactions

For the HCTY fluid, the tail potential is given by

wHCTY(r) = −e−z1(r−1)

r
+ A

e−z2(r−1)

r
r > 1 (8)

where, for the case we are interested in, one has z1 > z2, A > 0
so that wHCTY(r) is attractive at short distance and repulsive at
long distance. This kind of competing interaction potential has
recently been given much attention because, when the relative
strength A of the repulsion is high enough, the fluid–fluid phase
transition driven by the attractive contribution is replaced by
equilibrium cluster formation [8]. Such a mechanism for the
formation of large particle aggregates is expected to be relevant
for several colloidal systems, including protein solutions [9],
since competition between attraction and repulsion may stem
from a number of different scenarios. In some previous
papers [10] we focused on the effect of competition on the
bulk fluid–fluid transition as A approaches the value beyond
which cluster formation takes over, and showed that the main
effects of competition are the strong enhancement of large
density fluctuations, and the appearance in the large-fluctuation
region of two characteristic lengths in h(r). The mechanism at
the origin of the latter feature is in fact quite general and it
has already been pointed out a number of times in different
contexts [11]. As A is increased, the second moment of
wHCTY(r) gets smaller, and so does the coefficient b in (4). For
A large enough, b actually becomes negative, thereby giving
a ‘pre-peak’ in S(k) at low, but nonvanishing k that signals
the tendency towards microphase formation. Here we focus on
lower values of A, where b is still positive, but because of its
small value, the expansion (4) needs to be taken to the order
k4 in order to extract a reliable value of the correlation length,
even assuming that χT is large:

1 − ρĉ(k) ∼ 1

χT
+ b k2 + c k4. (9)

Substitution of (9) into (3) yields two different lengths ξ, μ,
both of which are much bigger than the particle size in the
regime in which χT is large and competition is important.
In [1], we reported the behaviour of these characteristic lengths
in the critical region based on the truncated expansion (9) for
z1 = 1, z2 = 0.5, and repulsion strength A = 0.0973,
that is very close to the limit beyond which the fluid–fluid
transition disappears. Here we would like to see how the results
reported there compare with those obtained from (3) using the
full expression of ĉ(k). The comparison is shown in figure 3
for ρ = ρc. HRT gives Tc = 1.6794, ρc = 0.25. For
ξ � 10, the two sets of values are completely superimposed.
This shows that (9) can be reliably used to determine ξ and
μ in the whole region where they are large compared to the
particle size. In the critical region, ξ follows the expected
power-law behaviour, and h(r) decays monotonically, as in the
systems discussed in the previous section. The decay becomes
oscillatory above a temperature tK1 located in the interval
−2 < log(tK1) < −1, at which ξ displays a kink. However, the
mechanism that governs the change from monotonic decay to
oscillations is different from the FW scenario described above.

4
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Figure 3. Correlation length on the critical isochore of the HCTY
potential with z1 = 1, z2 = 0.5, A = 0.0973. The reduced
temperature is t = (T − Tc)/Tc. Crosses: true correlation length ξ .
See the text for the meaning of μ. Dashed line: correlation length
obtained from the truncated expansion (9). Dotted line:
Ornstein–Zernike correlation length ξOZ. Inset: enlargement in the
neighbourhood of the Kirkwood temperature tK1. Only the data for
the true correlation length have been shown. Dot-dashed lines are a
guide to the eye.

For the system considered here, in the critical region not only
the leading pole α1 = iκ1, but also the next-to-leading one
α2 = iκ2 is purely imaginary. The corresponding length
μ = 1/κ2 has also been shown in the plot. As t increases,
α1 moves up along the imaginary axis, until α1 and α2 coalesce
for t = tK1. For t → t−

K1, the slopes of κ1 and κ2 as a function
of t become infinite, and so do those of ξ and μ, see inset to
figure 3. For t > tK1, the two poles move off the imaginary
axis as complex conjugate quantities. This is the Kirkwood
scenario [12], that has already been described in detail in
ionic fluids [13]. Unlike in the FW case, here the wavelength
of the oscillations becomes infinite at the crossover point.
Moreover, the comparison between figures 3 and 1 shows that
here oscillations persist much closer to the critical point, and
by the time monotonic decay takes over, ξ has increased to
more than 30 times the particle diameter σ , whereas at the
FW point shown in figure 1, ξ is smaller than σ , and nearly
equal to its hard-sphere value. In the critical region, ξ becomes
rapidly undistinguishable from ξOZ and much bigger than μ,
that saturates at a finite value for t → 0, and is actually almost
constant in most of the region t < tK1. However, as pointed out
above, both μ and (a fortiori) ξ are much bigger than σ . As
a consequence, even though the asymptotic behaviour of h(r)

for r → ∞ is ultimately determined by ξ , both lengths are
important to describe the correlations at relatively large values
of r , up to several tens of σ , suggesting the presence of large
clusters of correlated particles [1, 10]. Finally, we observe
that, as t increases above tK1, the decay does not remain
oscillatory up to arbitrary high temperatures, but becomes
again monotonic above a second Kirkwood temperature tK2

with 0 < log(tK2) < 1, at which α1 and α2 meet again on the
imaginary axis. This system then displays two Kirkwood lines,
as was discussed in [15]. Obviously, the higher-temperature
crossover cannot be described by the truncated expansion (9),

which is useful only at large ξ . For t > tK2, the purely
imaginary poles α1 = iκ1 and α2 = iκ2 move away from each
other, and for t → ∞ one has κ1 → z+

2 = 0.5, κ2 → z−
1 = 1.

Therefore, the decay length at high temperature is determined
by the potential range as in the case of the HCY potential with
z = 1.8 considered above.

5. Conclusions

We have carried out a study of the true correlation range
ξ of a hard-core fluid with three different tail interactions,
namely, the AO effective potential, an attractive Yukawa with
range adjusted to model the phase diagram of a LJ fluid,
and a double Yukawa with competing attractive and repulsive
tails. The correlation length has been determined along the
critical isochore from the critical to the high-temperature
regime by studying the poles of S(k) in the complex plane.
In the critical region, ξ becomes identical to the Ornstein–
Zernike correlation length, as expected, and as the temperature
increases it crosses over to a finite value that for short-ranged
tails is given by the hard-sphere correlation length ξHS, while
for longer-ranged tails is determined by the potential range
itself. As for the decay of the correlations as the temperature
increases, the systems studied give a rather complete overview
of the possible scenarios: purely monotonic decay at
all temperatures (attractive LJ-like Yukawa), monotonic to
oscillatory according to the FW crossover (AO), monotonic to
oscillatory to monotonic according to the Kirkwood crossover
(double Yukawa). As a concluding remark, we stress that in
the present study we have always dealt with rapidly decreasing
interactions. For power-law interactions such as the LJ itself,
the asymptotic decay of the correlations will also be described
by a power law, as pointed out in [14], so that the very
notion of true correlation range loses its meaning. Moreover,
our pole analysis rests on the simple form (1) for the direct
correlation function. The overall pole structure given by
more sophisticated closures could be different. However, the
crossover scenarios considered above are quite general, and we
expect that a different theory would mostly give quantitative
rather than qualitative differences.
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